430 research outputs found

    Exciting innovations for the spinally injured

    Get PDF
    Spinal injury can be devastating, resulting, as it often does, in some paralysis and loss of sensation. Engineering plays an important role in spinal cord injury rehabilitation. Here, the authors survey current research into the uses of functional electrical stimulation to improve the quality of life of spinally injured people. Touching on the area of spinal cord repair and nerve regeneration, they also consider the question of whether technology can help paraplegics to take steps again

    New results in feedback control of unsupported standing in paraplegia

    Get PDF
    The aim of this study was to implement a new approach to feedback control of unsupported standing and to evaluate it in tests with an intact and a paraplegic subject. In our setup, all joints above the ankles are braced and stabilizing torque at the ankle is generated by electrical stimulation of the plantarflexor muscles. A previous study showed that short periods of unsupported standing with a paraplegic subject could be achieved. In order to improve consistency and reliability and to prolong the duration of standing, we have implemented several modifications to the control strategy. These include a simplified control structure and a different controller design method. While the reliability of standing is mainly limited by the muscle characteristics such as reduced strength and progressive fatigue, the results presented here show that the new strategy allows much longer periods (up to several minutes) of unsupported standing in paraplegia

    Feedback control of unsupported standing in paraplegia. Part I: optimal control approach

    Get PDF
    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity

    Paraplegic standing supported by FES-controlled ankle stiffness

    Get PDF
    The objective of this paper was to investigate whether a paraplegic subject-is able to maintain balance during standing by means of voluntary and reflex activity of the upper body while being supported by closed loop controlled ankle stiffness using FES. The knees and hips of the subject were held in extended positions by a mechanical apparatus, which restricted movement to the sagittal plane. The subject underwent several training sessions where the appropriate level of stiffness around the ankles was maintained by the mechanical apparatus. This enabled the subject to learn how to use the upper body for. balancing. After the subject gained adequate skills closed-loop FES was employed to regulate ankle stiffness, replacing the stiffness provided by the apparatus. A method to control antagonist muscle moment was implemented. In subsequent standing sessions, the subject had no difficulties in maintaining balance. When the FES, support was withheld, the ability to balance was lost

    The governorship of the first duke of Albany

    Get PDF

    Feedback control of unsupported standing in paraplegia. Part II: experimental results

    Get PDF
    For pt. I see ibid., vol. 5, no. 4, p. 331-40 (1997). This is the second of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantar flexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors present experimental results from intact and paraplegic subjects

    Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach

    Get PDF
    This paper deals with design of feedback controllers for knee joint movement of paraplegics using functional electrical stimulation (FES) of the paralyzed quadriceps muscle group. The controller design approach, virtual reference feedback tuning (VRFT), is directly based on open loop measured data and fits the controller in such a way that the closed-loop meets a model reference objective. The use of this strategy, avoiding the modeling step, significantly reduces the time required for controller design and considerably simplifies the rehabilitation protocols. Linear and nonlinear controllers have been designed and experimentally tested, preliminarily on a healthy subject and finally on a paraplegic patient. Linear controller is effective when applied on small range of knee joint angle. The design of a nonlinear controller allows better performances. It is also shown that the control design is effective in tracking assigned knee angle trajectories and rejecting disturbances

    Feedback control of unsupported standing

    Get PDF
    This paper presents the results of continuing work on feedback control of unsupported standing in paraplegia. Our experimental setup considers a situation in which all joints above the ankle are braced, and stabilising torque at the ankle is generated by stimulation of the plantarflexors. A previous study showed that short periods of unsupported standing with paraplegic subjects could be achieved. In order to improve consistency and reliability of unsupported standing we are currently investigating several modifications to the control strategy. The paper reports progress towards this goal

    Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle

    Get PDF
    To restore functional use of paralyzed muscles by automatically controlled stimulation, an accurate quantitative model of the stimulated muscles is desirable. The most commonly used model for isometric muscle has had a Hammerstein structure, in which a linear dynamic block is preceded by a static nonlinear function, To investigate the accuracy of the Hammerstein model, the responses to a pseudo-random binary sequence (PRBS) excitation of normal human plantarflexors, stimulated with surface electrodes, were used to identify a Hammerstein model but also four local models which describe the responses to small signals at different mean levels of activation. Comparison of the local models with the Linearized Hammerstein model showed that the Hammerstein model concealed a fivefold variation in the speed of response. Also, the small-signal gain of the Hammerstein model was in error by factors up to three. We conclude that, despite the past widespread use of the Hammerstein model, it is not an accurate representation of isometric muscle. On the other hand, local models, which are more accurate predictors, can be identified from the responses to short PRBS sequences. The utility of local models for controller design is discussed

    Design of feedback controllers for paraplegic standing

    Get PDF
    The development, implementation and experimental evaluation of feedback systems for the control of the upright posture of paraplegic persons in standing is described. While the subject stands in a special apparatus, stabilising torque at the ankle joint is generated by electrical stimulation of the paralysed calf muscles of both legs using surface electrodes. This allows the subject to stand without the need to hold on to external supports for stability- this is termed 'unsupported standing'. Sensors in the apparatus allow independent measurement of left and right ankle moments together with measurement of the inclination angle. A nested loop structure for control of standing is implemented, where a high-bandwidth inner loop provides control of the ankle moments, while the angle controller in the outer loop regulates the inclination angle. A number of important modifications to a control strategy which was previously tested with both neurologically intact and paraplegic subjects are presented. The new strategy is described, and an experimental evaluation with intact subjects is reported. The experimental results show that the control system for unsupported standing performs reliably, and according to the design formulation. There aa-e a number of design choices, appropriate to different situations, and the practical effect of each is clear. This allows easy 'tuning' during an experimental session. This is important since the complete design procedure, from muscle dynamics identification to control design, has to be carried out as quickly as possible while the subject is standing in the apparatus. A number of recommendations are made regarding the preferred design choices for control of unsupported standing
    corecore